

SPECIAL MOBILITY STRAND

PROPERTIES OF CONCRETE UNDER FIRE CONDITIONS GORDANA BROĆETA NOVI SAD, April 2019

Ass. prof. Gordana Broćeta University of Banja Luka, Faculty of Architecture, Civil Engineering and Geodesy Bulevar vojvode Stepe Stepanovića 77, 78000 Banja Luka, B&H, e-mail: gordana.broceta@aggf.unibl.org

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

THE CONTENT

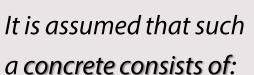
Fire testing of concrete

Effect of elevated temperatures on hardened cement paste

Influence of aggregate type on concrete fire resistance

Effect of elevated temperatures on steel

Co-funded by the Erasmus+ Programme of the European Union


According to the decision of the European Commission (94/611/EC), which was published in the official journal of the European Community No. L 241/25, according to EN 13501-1, the **concrete** is classified as

Euro Class A1,

which does not require a fire resistance testing.

- and heavy-weight aggregates and EN 13055-1 for light-weight aggregates,
 - cement, conforming to EN 197-1,
- water, conforming to EN 1008,
- admixtures, conforming to EN 934-2,
- additions, conforming to EN 12620 for powder aggregates,
- pigments, conforming to EN 12878,
- fly ash, conforming to EN 450,
- silica fumes, conforming to EN 13263 or
- other inorganic component materials, conforming to EN 206.

Classification according to EN 13501-1

The aim of EN 13501-1 is to define procedure for the classification of **reaction to fire** of construction products.

It applies to three categories, which are treated separately - construction products, floorings and linear pipe thermal insulation products.

Definition	Construction products				Floorings	
	A1				A1 _{fl}	
non-combustile materials	A2 - s1 d0 A2 - s2 d0 A2 - s3 d0	A2 - s A2 - s A2 - s	2 d1	A2 - s1 d2 A2 - s2 d2 A2 - s3 d2	A2 _{ff} - s1	A2 _{fl} - s2
combustible materials - very limited contribution to fire	B - s1 d0 B - s2 d0 B - s3 d0	B - s1 d1 B - s2 d1 B - s3 d1		B - s1 d2 B - s2 d2 B - s3 d2	B _{fl} - s1	B ₈ - \$2
combustible materials - limited contribution to fire	C - s1 d0 C - s2 d0 C - s3 d0	C - s1 d1 C - s2 d1 C - s3 d1		C - s1 d2 C - s2 d2 C - s3 d2	C ₈ - s1	C _{fl} - s1
combustible materials - medium contribution to fire	D - s1 d0 D - s2 d0 D - s3 d0	D - s1 d1 D - s2 d1 D - s3 d1		D - s1 d2 D - s2 d2 D - s3 d2	D _{ff} - s1	D _{fl} - s1
combustible materials - highly contribution to fire	E		E - d2		E _n	
combustible materials - easily flammable	F				F _B	

not be confused with

REACTION TO FIRE

RESISTANCE TO FIRE

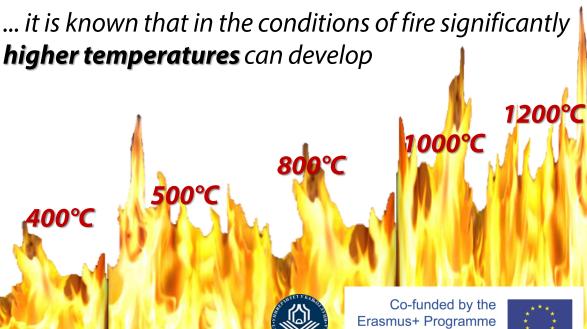
... is a response of a product in contributing by its own decomposition to a fire to which it is exposed, under specified conditions (means how the material itself reacts in the case of fire).

... is the ability of building components and systems to perform their intended fire separating and/or loadbearing functions under fire exposure.

FIRE RESISTANT

CONCRETE

the stated fire resistance refers to temperatures **up to 100°C**


of the European Union

FIRE RESISTANT

100°C

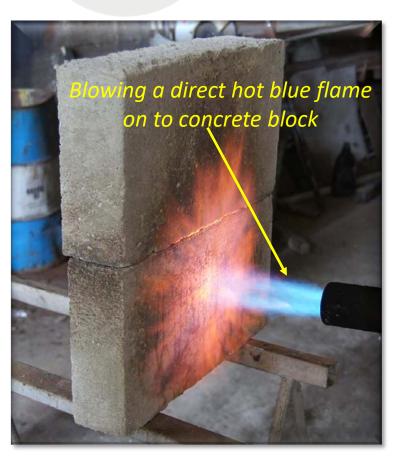
200°C 250°C

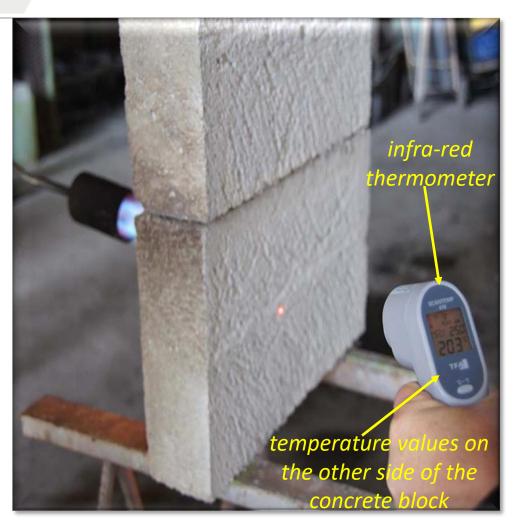
Random hair cracks formed due to fire

Concrete spalled from a slab soffit revealing pink/red discolouration

Spalling of concrete to beams and a column caused by fire

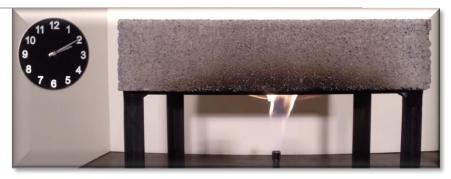
Reinforcement on a beam soffit exposed following a fire

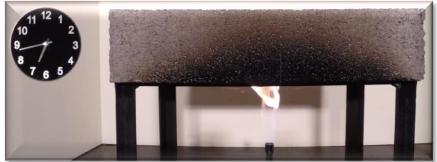

Colapse of floor construction exposed to fire

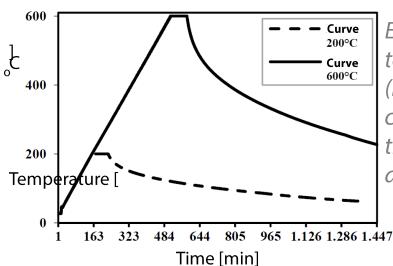


Fire testing of concrete 1200°C 1000°C 800°C 500°C 400°C 100°C 200°C 250°C Co-funded by the Erasmus+ Programme of the European Union

http://www.acimalta.eu/aciproperties.html




https://www.youtube.com/watch?v=_y m5x5O6B5A



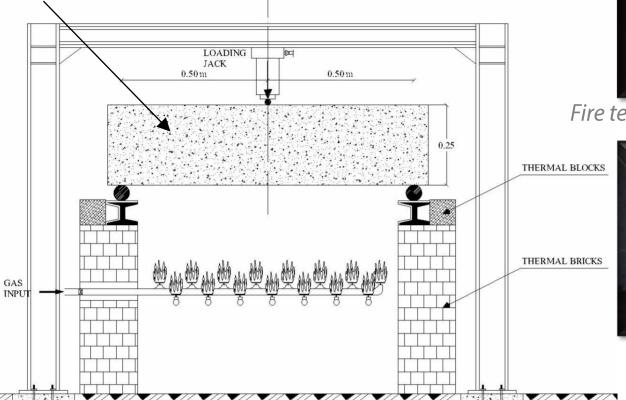
Co-funded by the Erasmus+ Programme of the European Union

conforming to Recommendation of RILEM TC 200-HTC

Evolution of temperatures (heating and cooling mode for the oven, 200°C and 600°C)

Electric stove

The appearance of the samples after testing



Samples arranged in the stove

https://dr.nsk.hr/islandora/object/gfos:177/preview

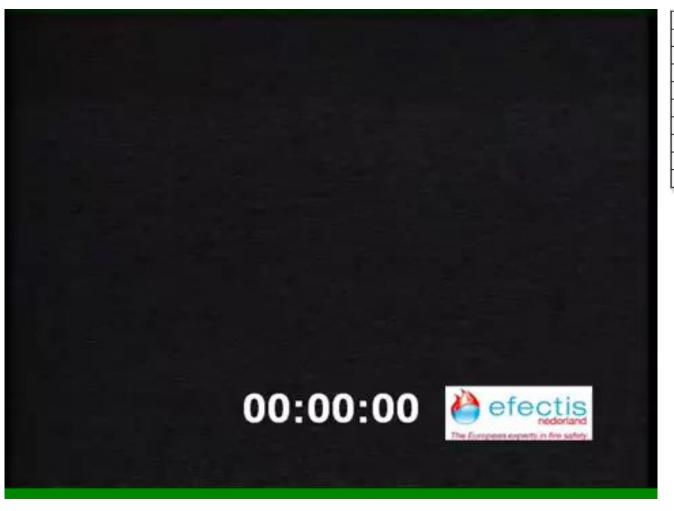
Amr W. Sadek, M. El-Hawary, Amr S. El-Deeb: Fire Resistance Testing of Concrete Slabs Reinforced by GFRP Rebars, European Journal of Scientific Research, Vol.15 No.2 (2006), pp. 190-200 https://www.researchgate.net/publication/250146419_Fire_Resistance_Testing_of_Concrete_Slabs_Reinforced_by_GFRP_Rebars

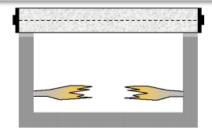
Concrete slabs reinforced by glass fiber reinforced polymer rebars

Fire testing of beam specimen

Fire penetrating cracks in beam specimen

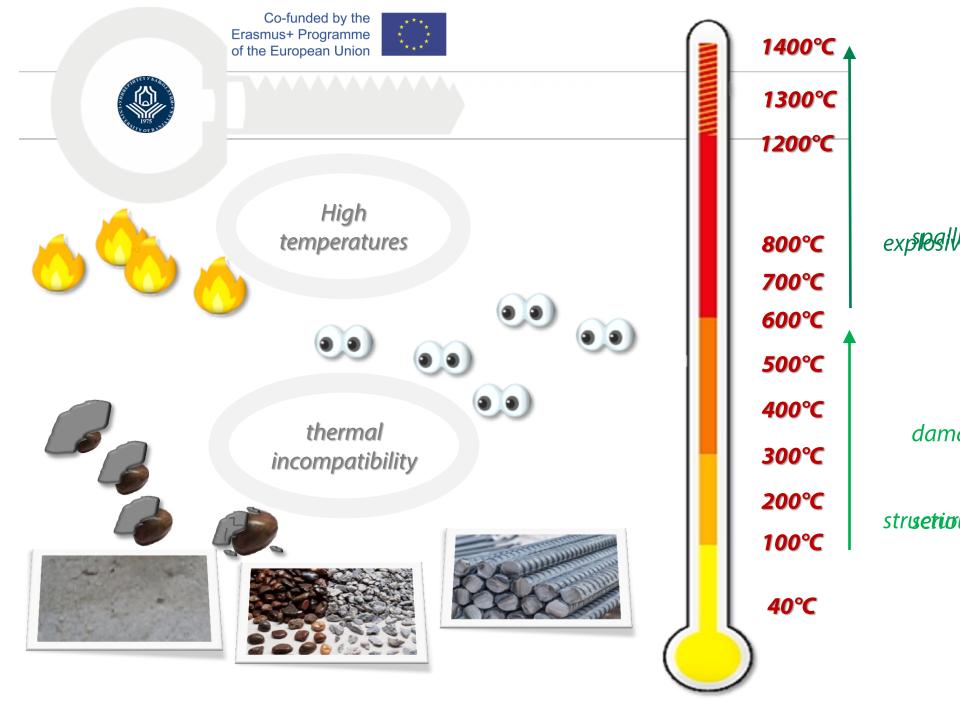
Test setup of beams

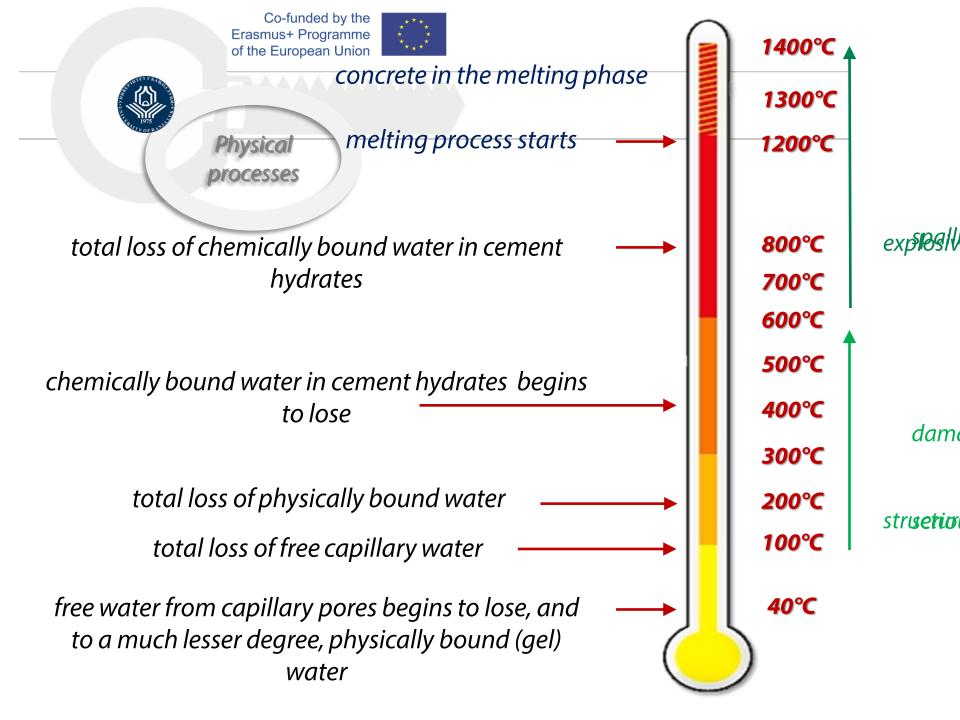


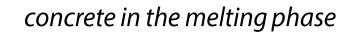


Concrete spalling during a fire test at Efectis Nederland

https://www.youtube.com/watch?v=CixMjo5VtgA


Time [min.]	Temperature [°C]	
0	20	
3	890	
5	1140	
10	1200	
30	1300	
60	1350	
90	1300	
120	1200	
>120	1200	




What happens to concrete at elevated temperature under fire conditions? 1200°C 1000°C 800°C 400°C 100°C 200°C 250°C Co-funded by the **Erasmus+ Programme** of the European Union

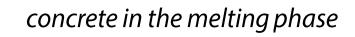
Molten decomposed concrete

1200°C

1400°C

600°C

300°C

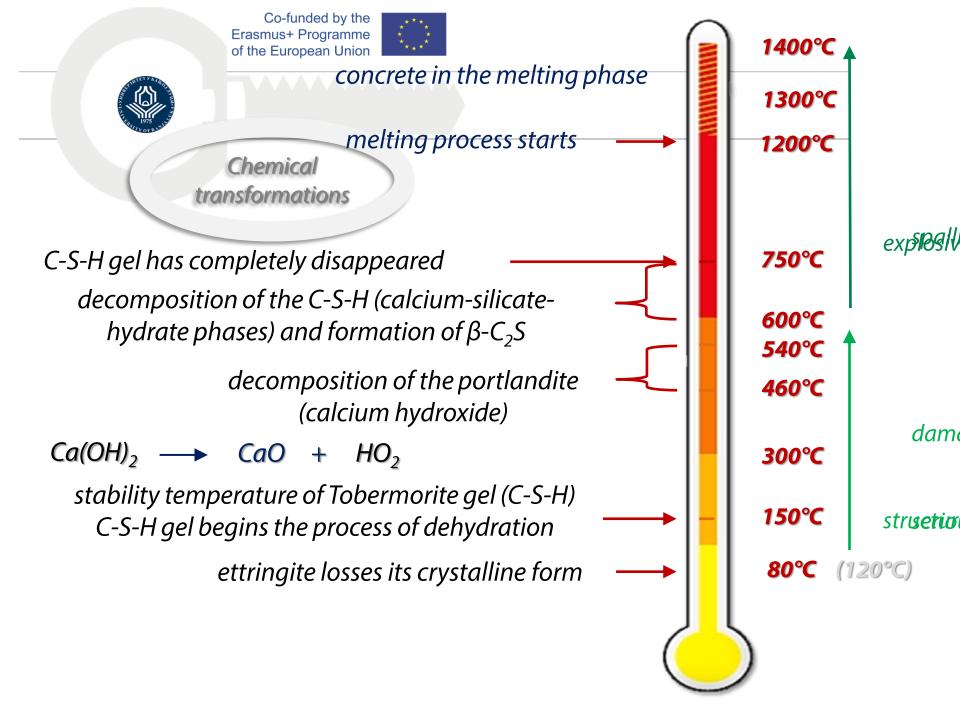

100℃

FIRE MIN

Molten decomposed concrete

melting process starts

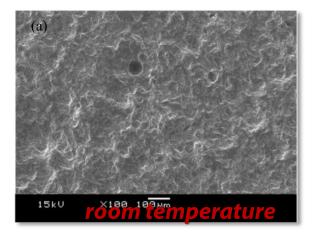
600°C

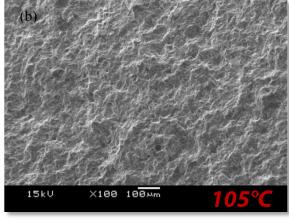

1400°C

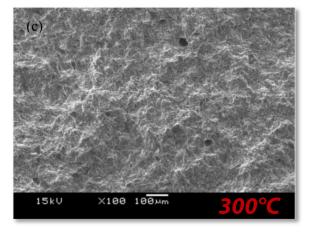
1200°C

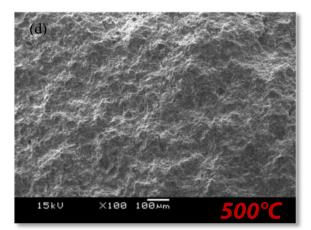
300°C

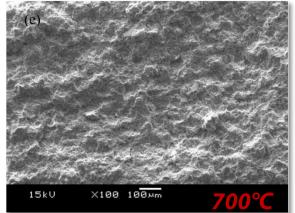
100℃

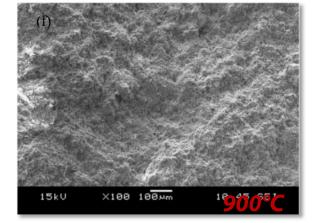


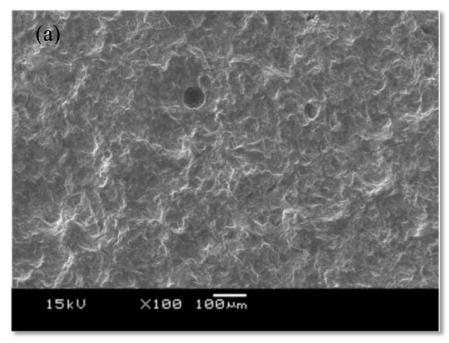





Seungmin Lim: Effects of elevated temperature exposure on cementbased composite materials, Dissertation,
University of Illinois at Urbana-Champaign, 2015

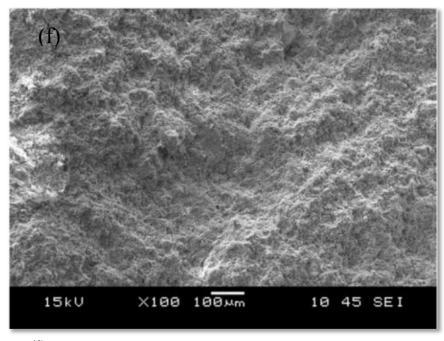

SEM images of fractured surfaces of cement paste with w/c of 0.35 in 100× magnification





Seungmin Lim: Effects of elevated temperature exposure on cementbased composite materials, Dissertation,
University of Illinois at Urbana-Champaign, 2015

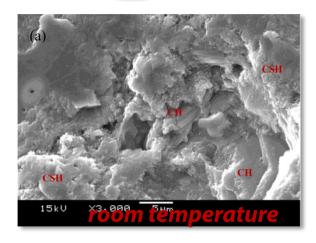
SEM images of fractured surfaces of cement paste with w/c of 0.35 in 100× magnification

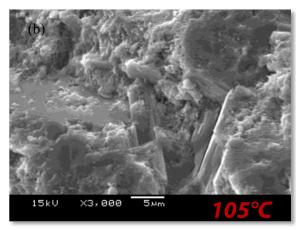

room temperature

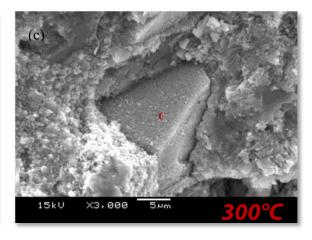
surface roughness of a fractured surface increases as temperature increases

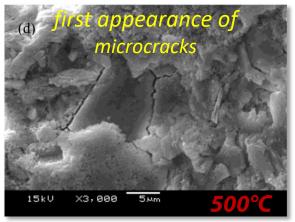
morphological changes as a function of exposure temperature

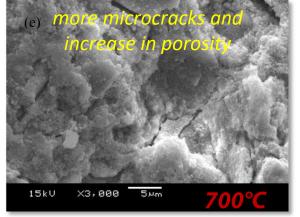
900°C

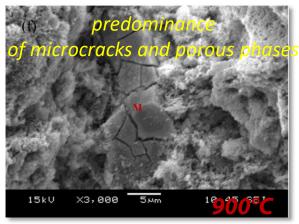


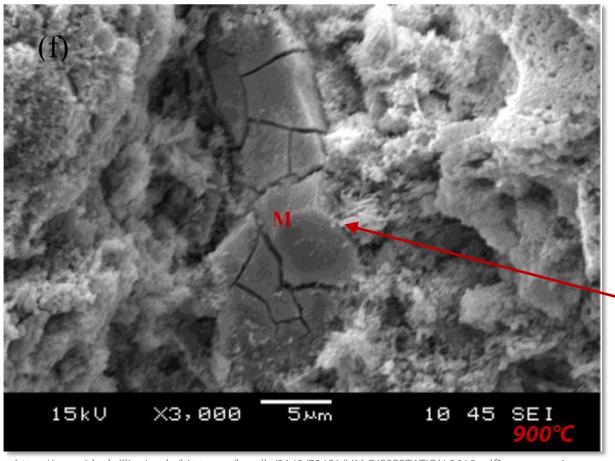





Seungmin Lim: Effects of elevated temperature exposure on cementbased composite materials, Dissertation,
University of Illinois at Urbana-Champaign, 2015


SEM images of fractured surfaces of cement paste with w/c of 0.35 in 3000× magnification

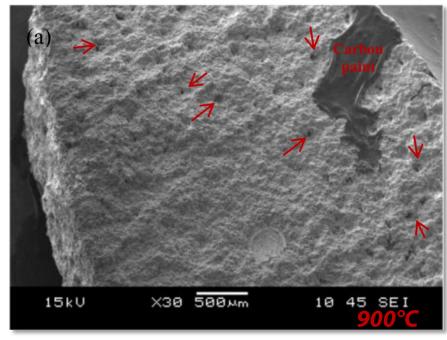


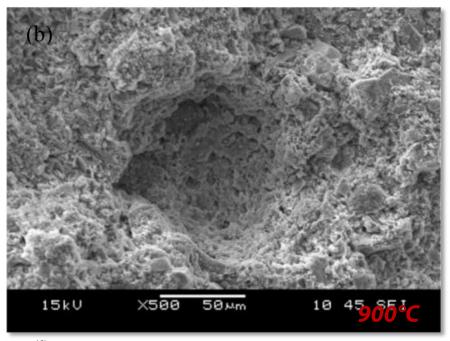


https://www.ideals.illinois.edu/bitstream/handle/2142/78451/LIM-DISSERTATION-2015.pdf?sequence=1

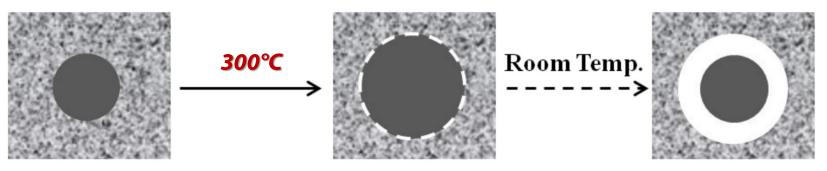
SEM images of fractured surfaces of cement paste with w/c of 0.35 in 3000× magnification

predominance of microcracks and porous phases

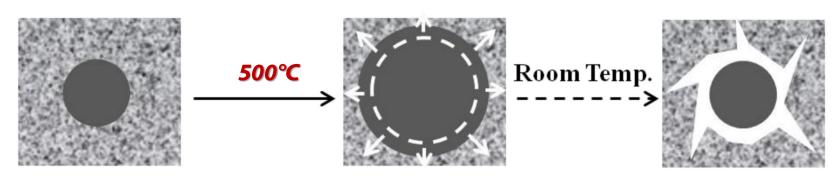

some particles (marked as **M**) are totally cracked


Seungmin Lim: Effects of elevated temperature exposure on cementbased composite materials, Dissertation,
University of Illinois at Urbana-Champaign, 2015

SEM images of fractured surfaces of cement paste with w/c of 0.35 at 900°C in $30 \times$ and $500 \times$ magnifications


particles (possibly in unhydrated phases)
"popping out" of the paste
... the exact cause of these voids could
not be established

large spherical voids (approx. 50 µm) appear on areas of the fractured surface



Seungmin Lim: Effects of elevated temperature exposure on cementbased composite materials, Dissertation,
University of Illinois at Urbana-Champaign, 2015

Schematic diagrams of the formation of a gap a and propagation of microcracks at the interface between unhydrated cement particle and paste matrix

Development of gap

Build-up of stress

Propagation of micro-cracks

Influence of aggregate type on concrete fire resistance

Aggregates of metamorphic rocks

Ouartzite

Due to a significant content of quartz, which in conditions of intense heating is considered most critical mineral of solid rock, at elevated temperatures (over 500°C) they show signs of degradation - cracking.

50°C increases volume by 0,17%

573℃ the largest expansion

polymorphic transformation

Quartzites are monomineralic rocks, constructed almost entirely of the mineral quartz SiO_2 - over 98%

a quartz → high-temperature β quartz

🗱 http://www.quartzpage.de/gen

k.html

the least favorable aggregates

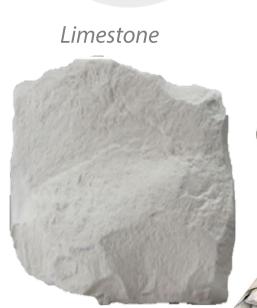
Influence of aggregate type on concrete fire resistance

Aggregates of igneous rocks

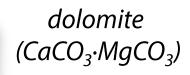
(granite, dacite, senitite, diorite, adensite, gabar, basalt, diabase)

are generally characterized by **good resistance** to the action of elevated temperatures, although they contain mineral quartz.

Given the fine-grained structure with well distributed mineral content and proportionally relatively low content of quartz, this cumstance has no significant influence.

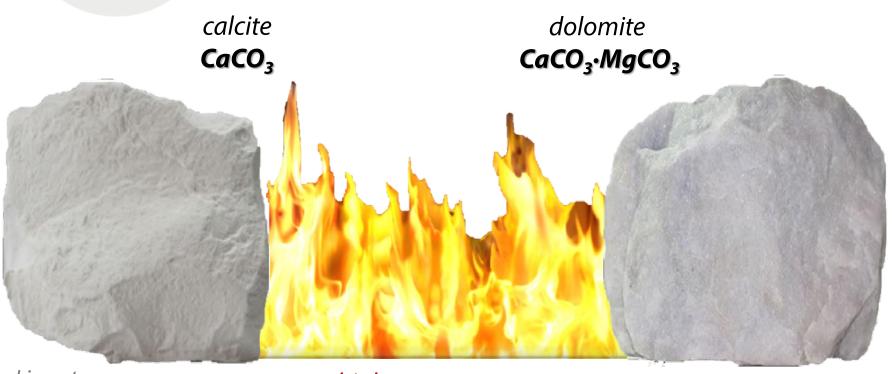


Influence of aggregate type on concrete fire resistance


Aggregates of sedimentary rocks

Dolomite

Dolomite aggregate for concrete



Limestone aggregate for concrete

Influence of aggregate type on concrete fire resistance

Aggregates of sedimentary rocks

Limestone

high temperature

870℃

800°C

CaO

MgO

Dolomite

Zhi Xing, Ronan Hébert, Anne-Lise Beaucour, Béatrice Ledésert, Albert Noumowé: Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature, Materials and Structures, November 2014, Volume 47, Issue 11, pp 1921–1940

Aggregates of sedimentary rocks (limestone aggregate)

no changes

color change for some particles of aggregates, becoming gradually more reddish

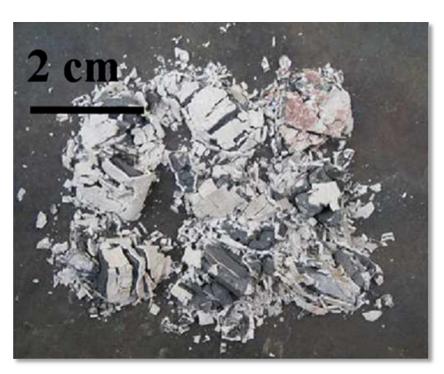
particles of aggregates are cracked and the particle surface has whitened

Co-funded by the Erasmus+ Programme of the European Union

Decarbonation

calcite lime carbon dioxide

 $CaCO_3 \longrightarrow CaO + CO_2$



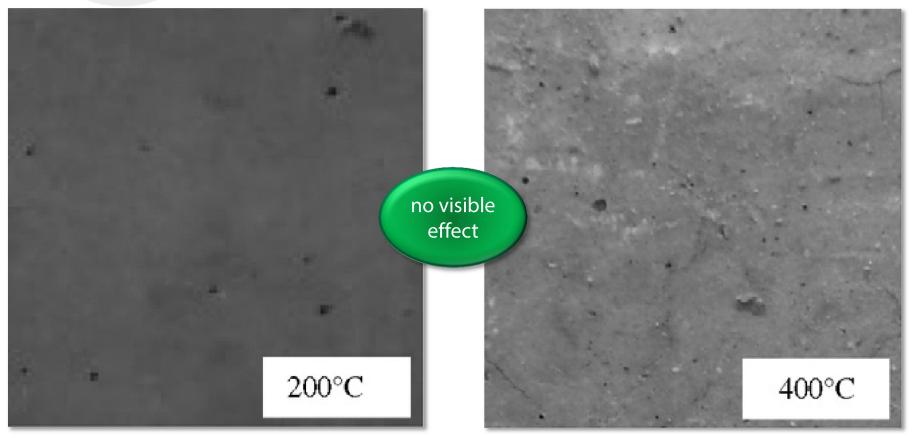
Appearance of the aggregate after heating at 750°C

Zhi Xing, Ronan Hébert, Anne-Lise Beaucour, Béatrice Ledésert, Albert Noumowé: Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature, Materials and Structures, November 2014, Volume 47, Issue 11, pp 1921-1940

Aggregates of sedimentary rocks (limestone aggregate)

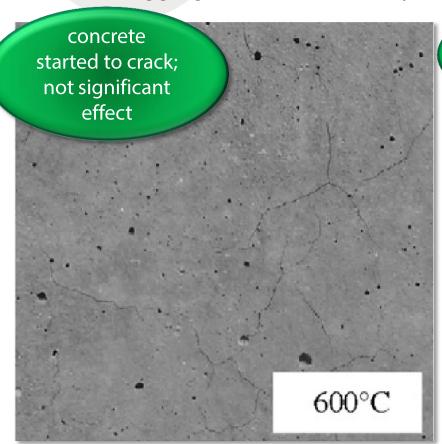
Appearance of the aggregate after heating−cooling cycle at 750°C 3 days after heating-cooling cycle at 750°C

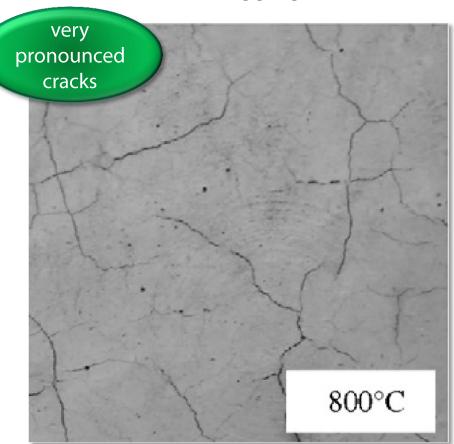
 $Ca(OH)_2$ volume expansion of 200%


Co-funded by the **Erasmus+ Programme** of the European Union

Omer Arioz: Effects of elevated temperatures on properties of concrete, Fire Safety Journal 42 (2007) pp. 516–522

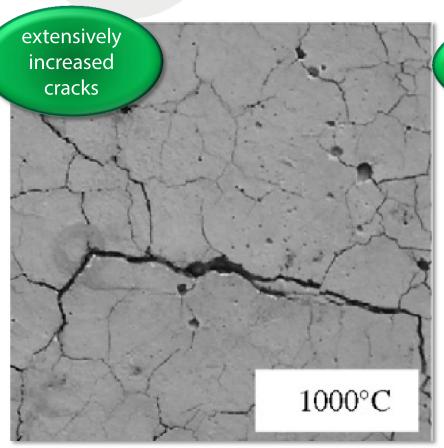
Aggregates of sedimentary rocks (crushed limestone aggregate)

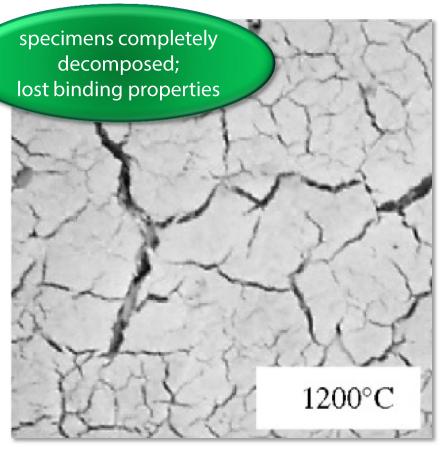

Surface texture of the concrete exposed to elevated temperatures



Omer Arioz: Effects of elevated temperatures on properties of concrete, Fire Safety Journal 42 (2007) pp. 516-522

Aggregates of sedimentary rocks (crushed limestone aggregate)

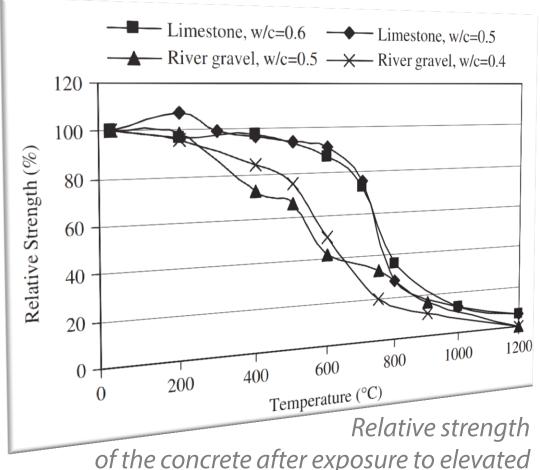

Surface texture of the concrete exposed to elevated temperatures



Omer Arioz: Effects of elevated temperatures on properties of concrete, Fire Safety Journal 42 (2007) pp. 516–522

Aggregates of sedimentary rocks (crushed limestone aggregate)

Surface texture of the concrete exposed to elevated temperatures



Aggregates of sedimentary rocks (crushed limestone aggregate)

The effect of high temperatures on the relative strength of concrete was more pronounced for concrete mixtures produced by river gravel aggregate. This can be attributed to the siliceous composition of the river gravels.

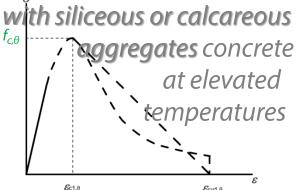
of the concrete after exposure to elevated temperatures

EN 1992-1-2:2004

Values for the main parameters of the stress-strain relationships of

normal weight concrete

100


200

300

Concrete	Silic	eous aggre	gates	Calcareous aggregates			
temp. θ	$f_{c,\theta}$ / f_{ck}	$\mathcal{E}_{\mathtt{c1},\theta}$	$\mathcal{E}_{cu1,\theta}$	$f_{c,\theta}/f_{ck}$	$\mathcal{E}_{\mathtt{c1},\theta}$	$\mathcal{E}_{cu1, \theta}$	
[°C]	[-]	[-]	[-]	[-]	[-]	[-]	
1	2	3	4	5	6	7	
20	1,00	0,0025	0,0200	1,00	0,0025	0,0200	
100	1,00	0,0040	0,0225	1,00	0,0040	0,0225	
200	0,95	0,0055	0,0250	0,97	0,0055	0,0250	
300	0,85	0,0070	0,0275	0,91	0,0070	0,0275	
400	0,75	0,0100	0,0300	0,85	0,0100	0,0300	
500	0,60	0,0150	0,0325	0,74	0,0150	0,0325	
600	0,45	0,0250	0,0350	0,60	0,0250	0,0350	
700	0,30	0,0250	0,0375	0,43	0,0250	0,0375	
800	0,15	0,0250	0,0400	0,27	0,0250	0,0400	
900	0,08	0,0250	0,0425	0,15	0,0250	0,0425	
1000	0,04	0,0250	0,0450	0,06	0,0250	0,0450	
1100	0,01	0,0250	0,0475	0,02	0,0250	0,0475	
1200	0,00	-	-	0,00	-	-	

 f_{ck} Characteristic compressive cylinder strength of concrete at 28 days

 f_{ctk} Characteristic axial tensile strength of concrete

Coefficient $k_{c,t}(\theta)$ allowing for decrease of tensile strength $(f_{ck,t})$ 1,0

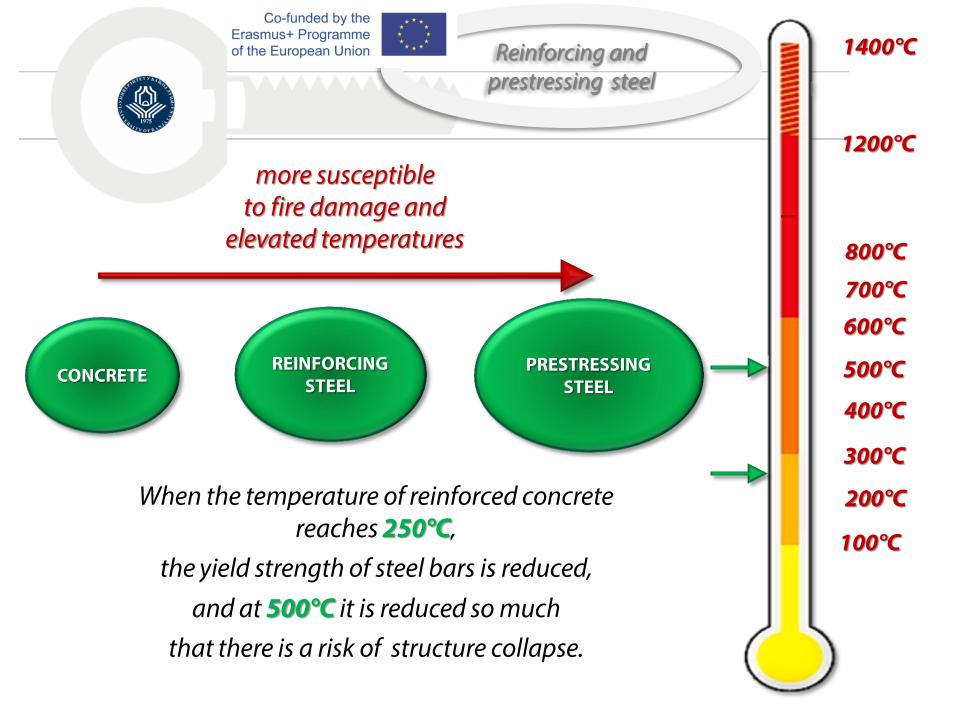
of concrete at elevated

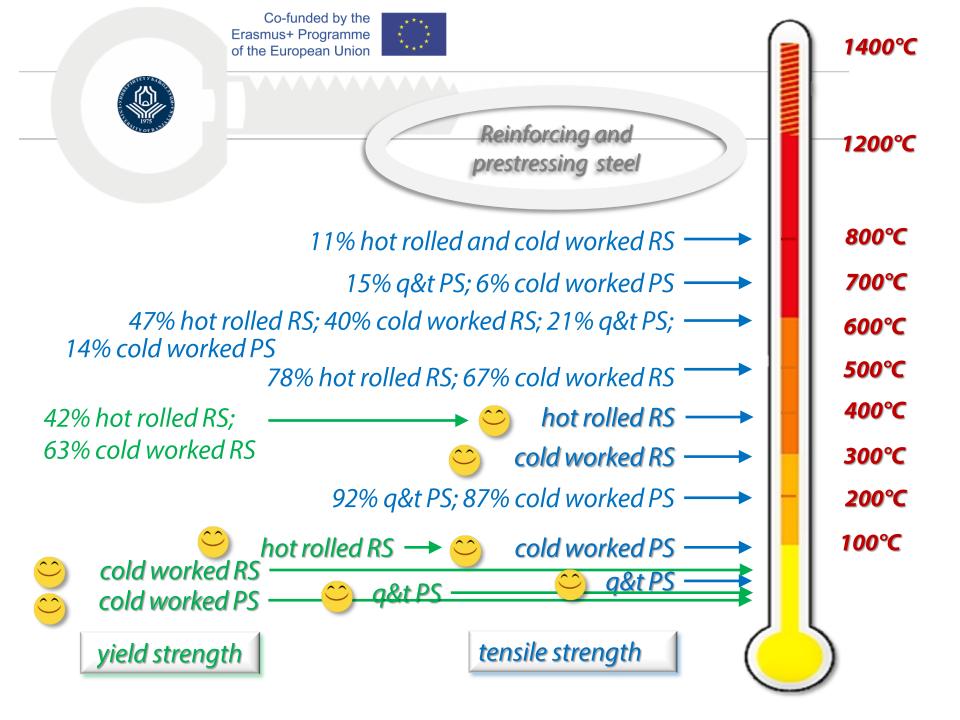
1,0

temperatures

0,4

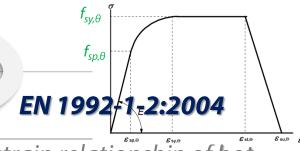
0,2


0,0


400

500

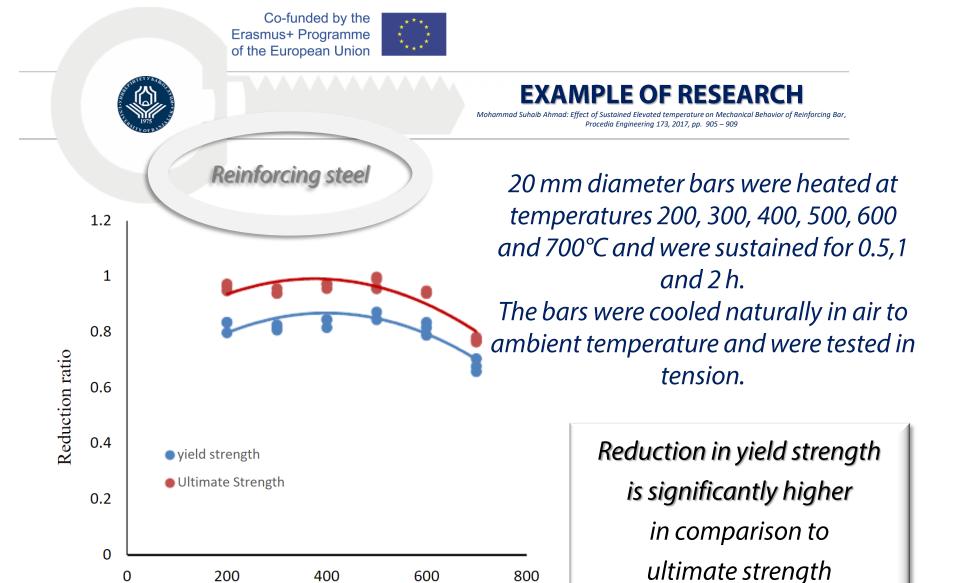
600


 θ [°C]

Values for the parameters of the stress-strain relationship of hot rolled and cold worked RS at elevated temperatures

Steel Temperature	$f_{sy, heta}$ / f_{yk}		$f_{sp, heta}$	/ f _{yk}	$E_{s, heta}/E_{s}$		
heta[°C]	hot rolled	cold worked	hot rolled	cold worked	hot rolled	cold worked	
1	2	3	4	5	6	7	
20	1,00	1,00	1,00	1,00	1,00	1,00	
100	1,00	1,00	1,00	0,96	1,00	1,00	
200	1,00	1,00	0,81	0,92	0,90	0,87	
300	1,00	1,00	0,61	0,81	0,80	0,72	
400	1,00	0,94	0,42	0,63	0,70	0,56	
500	0,78	0,67	0,36	0,44	0,60	0,40	
600	0,47	0,40	0,18	0,26	0,31	0,24	
700	0,23	0,12	0,07	0,08	0,13	0,08	
800	0,11	0,11	0,05	0,06	0,09	0,06	
900	0,06	0,08	0,04	0,05	0,07	0,05	
1000	0,04	0,05	0,02	0,03	0,04	0,03	
1100	0,02	0,03	0,01	0,02	0,02	0,02	
1200	0,00	0,00	0,00	0,00	0,00	0,00	

*f*_{vk}*Characteristic yield strength of reinforcement*



Values for the parameters of the stress-strain relationship of cold worked (cw) (wires and strands) and quenched and tempered (q&t) (bars) prestressing steel at elevated temperatures

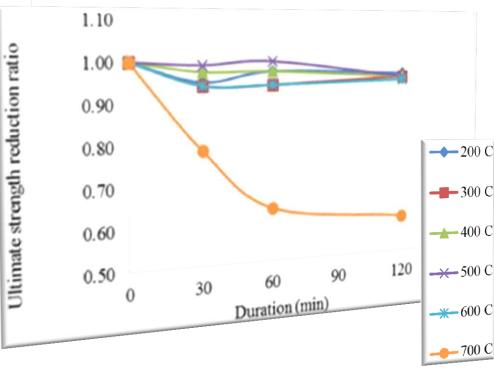
Steel temp.	$f_{py, heta}$ / $(eta f_{pk})$			$f_{pp,\theta}$ / (β f_{pk})		$E_{p, heta}/E_{p}$		$arepsilon_{pt, heta}$ [-]	$arepsilon_{pu, heta}$ [-]
θ[°C]	cw		q&t	cw	q&t	cw	q & t	cw, q&t	cw, q&t
	Class A	Class B							
1	2a	2b	3	4	5	6	7	8	9
20	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,050	0,100
100	1,00	0,99	0,98	0,68	0,77	0,98	0,76	0,050	0,100
200	0,87	0,87	0,92	0,51	0,62	0,95	0,61	0,050	0,100
300	0,70	0,72	0,86	0,32	0,58	0,88	0,52	0,055	0,105
400	0,50	0,46	0,69	0,13	0,52	0,81	0,41	0,060	0,110
500	0,30	0,22	0,26	0,07	0,14	0,54	0,20	0,065	0,115
600	0,14	0,10	0,21	0,05	0,11	0,41	0,15	0,070	0,120
700	0,06	0,08	0,15	0,03	0,09	0,10	0,10	0,075	0,125
800	0,04	0,05	0,09	0,02	0,06	0,07	0,06	0,080	0,130
900	0,02	0,03	0,04	0,01	0,03	0,03	0,03	0,085	0,135
1000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,090	0,140
1100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,095	0,145
1200	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,100	0,150

Note: For intermediate values of temperature, linear interpolation may be used.

Reduction ratio in yield strength and ultimate strength https://www.researchgate.net/publication/314250409_Effectors https://www.res

Temperature in °C

Mohammad Suhaib Ahmad: Effect of Sustained Elevated temperature on Mechanical Behavior of Reinforcing Bar Procedia Engineering 173, 2017, pp. 905 – 909

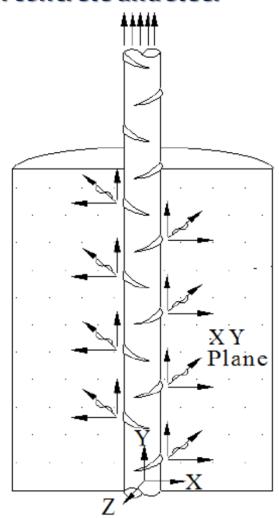

https://www.researchgate.net/publication/314250409_Ef fect_of_Sustained_Elevated_Temperature_on_Mechanic al_Behavior_of_Reinforcing_Bar

Reinforcing steel

1.20 1.00 0.80 0.60 0 30 60 90 120 Duration (min)

The change in yield strength reduction ratio with duration for all the temperature

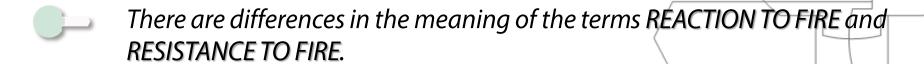
The change in ultimate reduction ratio with duration for all the temperatures



Bond between concrete and steel

The bond between concrete and steel can be adversely affected at temperatures

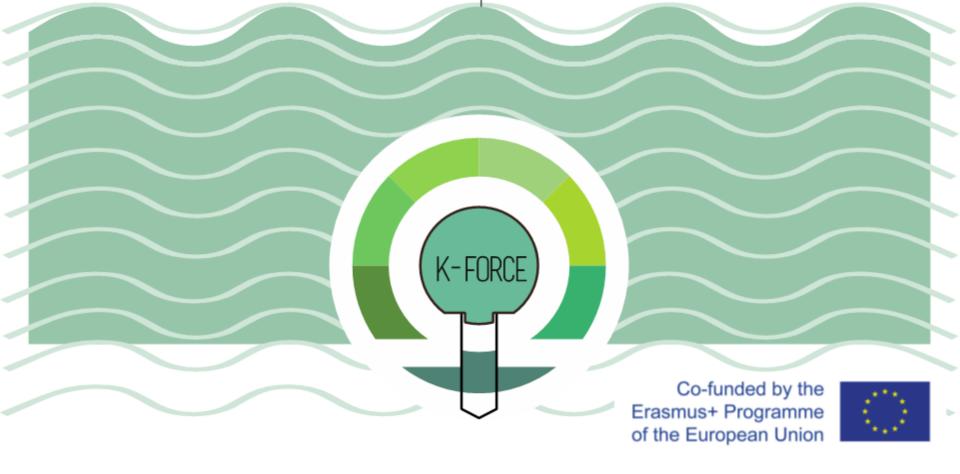
higher than 300°C


because of the greater thermal conductivity of steel compared to the cover concrete and differences in thermal expansion properties.

https://www.researchgate.net/publication/26614396 6_Bond_stress_behavior_between_concrete_and_ste el_rebar_Critical_investigation_of_pullout_test_via_Finite_Element_Modeling

CONCRETE

Conclusion


- According to EN 13501-1, the **concrete** is classified as **Euro Class A1**, which does not require a fire testing.
- Type and properties of aggregate play an important role on the properties of concrete exposed to elevated temperatures.
- From the aspect of resistance to fire, the least favorable aggregates are obtained from rocks of metamorphic origin, primarily of quartzite rocks.
- In this sense, dolomite aggregates, limestone aggregates, recycled aggregate of crushed brick and granulated slag, may be preferred.

Co-funded by the Erasmus+ Programme of the European Union

Conclusion

- Steel is more susceptible to fire damage and elevated temperatures, compared to concrete.
- Prestressing steel is more susceptible to fire damage and elevated temperatures, compared to reinforcing steel.
- When the temperature of reinforced concrete reaches 250°C, the yield strength of steel bars is reduced and at 500°C it is reduced so much that there is a risk of structure collapse.
- Reduction in yield strength is significantly higher in comparison to ultimate strength.
- The bond between steel and concrete can be adversely affected at temperatures higher than 300°C.

Thank you for your attention

Ass. prof. Gordana Broćeta gordana.broceta@aggf.unibl.org

Knowledge FOr Resilient soCiEty