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Deterministic design

𝐾𝐷 =
48𝐸𝐼

𝐿3
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𝑥𝐷 =
𝑃

𝐾𝐷

𝐼 =
𝑏ℎ3

12

Known data:

ℎ = 0.5

𝐿 = 15

𝑥𝐷𝑐𝑟

𝐸 = 30 · 109

Limit state function

𝑔 = 1 −
𝑥𝐷
𝑥𝐷𝑐𝑟

𝑥𝐷𝑐𝑟 = 0.03

where

and

𝑔 = 1 −
𝑃𝐿3

4𝐸𝑏ℎ3𝑥𝐷𝑐𝑟
> 0

then𝑃 = 100,000

Failure if:

𝑏 >
𝑃𝐿3

4𝐸ℎ3𝑥𝐷𝑐𝑟
= 0.22

Cross section:

𝑔 < 0

𝑏 = ?

𝑃

𝐿

ℎ

𝑏
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𝑥𝐷𝑐𝑟

𝑃

𝐿

𝐼 =
𝑏ℎ3

12

Cross section:

ℎ

𝑏

𝑃~𝑁(𝜇𝑃, 𝜎𝑃)

𝜇𝑃 = 100,000

𝜎𝑃 = 5,000

𝐶. 𝑜. 𝑉. =
𝜎𝑃
𝜇𝑃

= 5%

Uncertain loading:

𝑃 is a random variable

𝑃 = 𝑧𝜎𝑃 + 𝜇𝑃

𝑧 ~ 𝑁(0,1)

It is always convenient 

to use standard normal 

random variables, i.e.:
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A simple transformation from 𝑋𝑖 to 𝑍𝑖 can be defined by the identity

Φ(𝑍𝑖) = 𝐹𝑋𝑖(𝑋𝑖)

where  𝐹𝑋𝑖 is the distribution function for 𝑋𝑖. Given a realization 𝒛 of 𝒁 a 

realization 𝒙 of 𝑿 can be determined by 

𝑥𝑖 = 𝐹𝑋𝑖
−1(Φ(𝑧𝑖))
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𝑃𝐹 = 𝑃 𝑔 < 0 = න
𝐹

𝑞 𝒛 d𝒛

Where 𝑞 𝒛 is the joint Probability Density Function (PDF) of 

the random variables and

The failure probability is given as

𝐹 = {𝒛 ∶ 𝑔 < 0}

Denotes the “failure domain” or “failure region” which is a 

subset in the parameter space of 𝒛
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𝑥𝐷𝑐𝑟

𝑃

𝐿

𝐼 =
𝑏ℎ3

12

Cross section:

ℎ

𝑏

𝑃𝐹 = 𝑃 𝑔 < 0 = න
𝐹

𝑞 𝑧 d𝑧

In our example, using:

For 𝑏 = 0.23 𝑃𝐹 = 0.242
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𝑥𝐷𝑐𝑟

𝑃

𝐿

𝐼 =
𝑏ℎ3

12

Cross section:

ℎ

𝑏

The design requirement now is 

the target reliability of the system

𝑅∗ = 1 − 𝑃𝐹
∗

Or equivalently the target failure 

probability 𝑃𝐹
∗

For example: 𝑃𝐹
∗ = 10−4 𝑏 = 0.264
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𝑥𝐷𝑐𝑟

𝑃

𝐿

𝐼 =
𝑏ℎ3

12

Cross section:

ℎ

𝑏

Probabilistic Model

Random 

variable

Distribution Mean 

value

C.o.V

𝑃 Normal 100,000 5%

𝐸 Normal 30 · 109 2.5%
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𝑔 < 0

𝑔(𝑧) < 0

Safe domain

Failure domain

𝑧2

𝑧1

𝑃𝐷𝐹
For a given value of 𝑏 = 0.26

This volume represents the 

failure probability 𝑃𝐹

How to calculate it?

𝑔(𝑧) > 0
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𝑔(𝑧) < 0

𝑔(𝑧) > 0

Safe domain

Failure domain

𝑥∗

𝛽

Design point

The failure domain is 

approximated by a linear 

half-space 𝐹1.

The “design point” is the 

point in 𝐹1 with minimal 

distance to the origin, i.e. 

with minimal Euclidean 

norm.

The maximum of the PDF in 

𝐹1 is at the design point.

𝐹1

𝑔1 𝑧 = 0
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𝑔(𝑧) < 0

𝑔(𝑧) > 0

Safe domain

Failure domain

𝑥∗

𝛽

Design point 𝑃𝐹 ≈ ෢𝑃𝐹 = Φ(−𝛽)

The approximation is 

given by

It is exact when:

• The limit state function is linear 

with respect to the vector of 

random variables 𝒛
• 𝒛 is Gaussian distributed

𝑃𝐹 ≈ ෢𝑃𝐹 = Φ −2.243 = 0.0124

For 𝑏 = 0.26, the approximation gives

𝑔1 𝑧 = 0
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How to determinate 𝛽?

1. Guess 𝒛(0). Set 𝑖 = 0.

2. Calculate 𝑔 𝒛 𝑖 and 𝛻𝑔 𝒛 𝑖

3. Calculate an improved guess of 𝛽 with

𝒛 𝑖+1 = 𝛻𝑔 𝒛 𝑖
𝛻𝑔 𝒛 𝑖 𝑇

𝒛 𝑖 − 𝑔(𝒛 𝑖 )

𝛻𝑔 𝒛 𝑖 𝑇𝛻𝑔 𝒛 𝑖

4. Calculate

𝛽 𝑖+1 = 𝒛 𝑖+1 𝑇𝒛 𝑖+1

5. If |𝛽 𝑖+1 − 𝛽 𝑖 | < 10−3 then stop. Else 𝑖 = 𝑖 + 1 and go to step 2.
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• The estimator does not depend of 

the order of ෢𝑃𝐹
• Under particular conditions leads 

to the exact solution

• The linearization introduce an 

error

• It is found that is not accurate in 

high dimensions

• It is necessary to find the design 

point

• It might be expensive in high 

dimensions

First Order Reliability Method (FORM)
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𝑔(𝑧) < 0

𝑔(𝑧) > 0

Safe domain

Failure domain

𝑥∗

𝛽

It intends to improve FORM 

taking into account the 

curvature of limit state 

function at the design point. 

The failure boundary is 

approximated by an hyper-

paraboloid with limit state 

function 𝑔2.

𝐹2

𝑔2 𝑧 = 0
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𝑃𝐹 ≈ ෢𝑃𝐹 = Φ −𝛽 ෑ

𝑖=2

𝑛

1 + 𝑐𝑖𝛽
−
1
2 , 𝛽 → ∞

The SORM approximation is given by

Where 𝑐𝑖, 𝑖 = 2,… , 𝑛 are the principal curvatures of the paraboloid at 

the design point.

It is also assumed that −𝑐𝑖< 1/𝛽 for all 𝑖 = 2,… , 𝑛
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How to calculate the area of a circle?

And implicitly 𝜋?

• Simulate 𝑁 random numbers into 

a unit square with area 𝐴 = 1

• Draw a ¼ of a unit-radio circle 

with area 𝐴1 = 𝜋/4

• Count the points inside the circle 

𝑁1

• The ratio 
𝐴1

𝐴
=

𝑁1

𝑁

• Then 𝜋 ≈ 4
𝑁1

𝑁
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How is affected the estimation of 𝜋 ≈ 𝜋∗ by the number of simulations?
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We can use the same approach to calculate this volume

𝑧2

𝑧1

𝑃𝐷𝐹

• A large number 𝑁 of realizations ො𝒛 of 

basic random variables is simulated 

using 𝑞 𝒛

• The failure probability estimator ෢𝑃𝐹 is 

obtained by counting the number of 

realizations in the failure domain
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• 𝑁 realizations of standard normal 

random variables are simulated
• This is the only step where the 

information regarding the distribution 

of the random variables in included

Procedure
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1. 𝑁 realizations of standard normal 

random variables are simulated
• This is the only step where the 

information regarding the distribution of 

the random variables is included

2. Identify the number 𝑁1 of realizations 

in the failure domain
• This is the only step where the 

information regarding the limit state 

function is included

Procedure
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1. 𝑁 realizations of standard normal 

random variables are simulated
• This is the only step where the 

information regarding the distribution of 

the random variables is included

2. Identify the number 𝑁1 of realizations in 

the failure domain
• This is the only step where the 

information regarding the limit state 

function is included

3. The estimator is given by

෢𝑃𝐹 =
𝑁1

𝑁

Procedure
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In our example, using 𝑏 = 0.26, how 𝑁 affects the variability of the estimator ෢𝑃𝐹? 

𝐶. 𝑜. 𝑉(෢𝑃𝐹) =
1 − ෢𝑃𝐹
𝑁

𝑁 𝐶. 𝑜. 𝑉(෢𝑃𝐹)

10 282%

100 89%

1,000 28%

10,000 9%

100,000 3%

If ෢𝑃𝐹 = 0.0124 then 
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In our example, using 𝑏 = 0.285, i.e. ෢𝑃𝐹 = 1.5 × 10−4. How ෢𝑃𝐹 affects 𝐶. 𝑜. 𝑉(෢𝑃𝐹)?

It seems that there is not 

enough accuracy
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In our example, using 𝑏 = 0.285, i.e. ෢𝑃𝐹 = 1.5 × 10−4. How ෢𝑃𝐹 affects 𝐶. 𝑜. 𝑉(෢𝑃𝐹)?

𝑁 𝐶. 𝑜. 𝑉(෢𝑃𝐹)

10 2581%

100 816%

1,000 258%

10,000 82%

100,000 26%

1,000,000 8%

𝐶. 𝑜. 𝑉 ෢𝑃𝐹 < 10% is 

normally accepted
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𝑏 = 0.285
෢𝑃𝐹 = 1.5 × 10−4

𝑏 = 0.260
෢𝑃𝐹 = 1.24 × 10−2

When the limit state function is far from the 

origin is more difficult to obtain realizations in 

the failure domain
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• Independent of the number of 

random variables

• Independent of the shape of the 

limit state function

• The estimator is unbiased

• The number of samples required

is proportional to 1/𝑃𝐹
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The idea is to concentrate the realizations in 

an area with large contribution to ෢𝑃𝐹

𝑃𝐹 = න
𝑔<0

𝑞 𝒛 d𝒛 = න
𝑔<0

𝑞 𝒛

𝑝 𝒛
𝑝 𝒛 d𝒛

Then, the estimator is given by

Where {𝒛𝑘
′ : 𝑘 = 1, … , 𝑁} are now samples 

drawn from 𝑝 instead of 𝑞

෢𝑃𝐹 =
1

𝑁
෍

𝑘=1

𝑁
𝑞 𝒛𝑘

′

𝑝 𝒛𝑘
′ 𝐼(𝒛𝑘

′ ∈ 𝐹)



Importance SamplingReliability Analysis Techniques

In our example, using 𝑏 = 0.285, i.e. ෢𝑃𝐹 = 1.5 × 10−4. How 𝑁 affects the

variability of the estimator ෢𝑃𝐹?
𝑁 𝐶. 𝑜. 𝑉(෢𝑃𝐹)

MCS

𝐶. 𝑜. 𝑉(෢𝑃𝐹)
IS

10 2581% 65%

100 816% 19%

1,000 258% 7%

10,000 82% 2%

With 1,000 samples achieves 

the same accuracy than 

1,000,000 samples using 

CMCS
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• Reduce dramatically the number 

of samples required by using 

CMCS

• An incorrect selection of the 

importance sampling density 

function can lead to erroneous 

estimates of the reliability
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The idea is to use asymptotic properties with a simple regression technique

• CMCS is used to estimate the failure probability in each support point

• The standard deviation for each support point is increased by a factor 
1

𝑓

• Due to the larger standard deviation the failure probability is increased 

reducing the computational cost

• The functional form is given by 

𝛽 𝑓 = 𝐴 · 𝑓 +
𝐵

𝑓𝐶
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𝑓 = 1 𝑓 = 0.6
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𝛽 𝑓 = 𝐴 · 𝑓 +
𝐵

𝑓𝐶

Performing a regression, the 

following parameters are 

estimated

𝐴 = 3.6078
𝐵 = 0.0066
𝐶 = 2.1087

Then the functional form

Is evaluated for 𝑓=1

𝛽 1 = 3.61

෢𝑃𝐹 = Φ −𝛽(1) = 1.5 × 10−4

And then the estimator is given by

෢𝑃𝐹 = 0.135

෢𝑃𝐹 = 0.072

෢𝑃𝐹 = 0.035

The failure probabilities are much 

larger than the original implying a 

lower computational cost
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