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Context of Engineering Decision Making

What are we up against?

Corrosion Fatigue
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Context of Engineering Decision Making

What are we up against?

Tornados and strong winds
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Context of Engineering Decision Making

What are we up against?

Earthquakes



6/50                         M. H. Faber                          Systems Engineering, April 2017Richardson Lecture: 

Context of Engineering Decision Making

What are we up against?

Earth slide Rock fall
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Context of Engineering Decision Making

What are we up against?

Fires Explosions
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Context of Engineering Decision Making

What are we up against?

Over load Design error
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Context of Engineering Decision Making

What are we up against?

Bombs Airplane impacts
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Context of Engineering Decision Making

What are we up against?

Deepwater Horizon

April 20, 2010

11 fatalities

17 injured

Oil spill > 5 million barrels

Health effects?

Eco. imp. > 10 billion $US

BP response – 14 billion $US

22000 lost jobs
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Context of Engineering Decision Making

What are we up against?

Hurricane Katrina

August 23, 2005

> 1800 fatalities

Eco. imp. > 80 billion $US
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Context of Engineering Decision Making

What are we up against?

Fukushima Nuclear Event

March 11, 2011

No fatalities ..?

Eco. imp. > 75 billion $US
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Context of Engineering Decision Making

What are we up against?

SARS, 2003

Fatalities: < 800

Eco. imp. 2% GDP – 200 billion $US
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Context of Engineering Decision Making

What are we up against?

Food borne diseases - USA

Affects 76 million per year

Hospitalizations: 325000 per year

Fatalities: 5000 pr year
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Attributes of decision outcomes

Decisions aim to achieve an objective

The degree of achievement is measured by attributes

- natural attributes (measurable, e.g. costs and loss of 
lives)

- constructed attributes (a function of natural attributes 
e.g. GDP)

- proxy attributes (indicators which measure the perceived 
degree of fulfilment of an objective)  

Decisions and Preferences
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Preferences among attributes - utility

The attributes associated with a decision outcome may be 
translated into a degree of achievement of the objective by 
means of a utility function

different attributes are brought together on one or several 
scales

multi attribute decision making implies a weighing of 
different attributes

Decisions and Preferences
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Constraints on decision making

In principle – any society may define what they consider to 
be acceptable decisions

Typically decisions are constrained – e.g. in terms of 
maximum acceptable risks to 

- persons
- qualities of the environment

Decisions and Preferences
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Uncertainty

Different types of uncertainties influence decision making

Inherent natural variability – aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

Model uncertainty – epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data



19/50                         M. H. Faber                          Systems Engineering, April 2017

Probability
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Probability



21/50                         M. H. Faber                          Systems Engineering, April 2017

Probability
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Learn how to develop knowledge !

Formulate hypothesis about the world

Utilize existing knowledge

Combine with data

Probability
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Conditional probabilities are of special interest as they provide 
the basis for utilizing new information in decision making.

The conditional probability of an event E1 given that event E2

has occured is written as:

The event E1 is said to be probabilistically independent of the 
event E2 if:

1 2
1 2

2

( )
( )

( )

P E EP E E
P E

 2( ) 0P E Not defined if 

1 2 1( ) ( )P E E P E

Probability
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From

it follows that

and when E1 and E2 are statistically independent it is

1 2
1 2

2

( )
( )

( )

P E EP E E
P E



1 2 2 1( ) ( ) ( )P E E P E P E

1 2 2 1 2( ) ( ) ( )P E E P E P E E

Probability
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Consider the sample space     divided up into n mutually 
exclusive events E1, E2, …, En



       

           

 
n

i 1

...

...

( )

1 2 n

1 1 2 2 n n

i i

P A P A E P A E P A E

P A E P E P A E P E P A E P E

P A E P E


   

   





E1 E2 E3 E4

E5 E6 E7 E8

A

Probability
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as there is 

we have  

1

( ) ( ) ( ) ( )
( )

( )
( ) ( )

i i i i
i n

i i
i

P A E P E P A E P E
P E A

P A P A E P E


 



( ) ( ) ( ) ( ) ( )i i i iP A E P A E P E P E A P A 

Likelihood Prior

Posterior

Bayes’ Rule
Reverend Thomas 

Bayes 

(1702-1764)

Probability
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Decision Ranking

Emperor Qianlong 

Qing dynasty

Reign :1735 – 1796

Daniel Bernoulli 1738
Expected utility hypothesis

von Neumann and Morgenstern 1947
4 Axioms of utility theory:
Ranking based on expected value 
of utility (VNM rational)
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The risk associated with a given activity RA may then be written as

the consequences of the event CEi

The risk contribution REi
from the event Ei is defined through the 

product between  

Decision Ranking

Risk is a characteristic of an activity relating to all possible 
events nE which may follow as a result of the activity 





E

ii

E

i

n

i
EE

n

i
EA CPRR

11

the event probability PEi

and  
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Decision Optimization

Prior decision analysis

Decision Event Benefit

 a  X

 *

0 max ( , ) max ( , ) ( , )Xa a
B E b a X b a x f x a dx   

( , )b a x

Optimal decision maximizes the expected value of utility (benefit) 

(von Neumann  & Morgenstern)

Information is
bought by choice of
prior density
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Decision Optimization

Posterior decision analysis

By sampling information     using an experiment      we may update the 

probabilistic  description of   

z
X

( ) ( , )
( , )

( ) ( , )

X
X

X

L x f x a
f x a

L x f x a


 



z
z

z

( ) ( , )L x L x ez z

Of course the likelihood of the sample      depends on the experiment      why we write z e

e
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Decision Optimization

Posterior decision analysis

Decision Event Benefit

 a  X

  ˆmax ( , ) max ( , ) ( , )Xa a
E b a X b a x f x a dx   z

( , )b a x
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Decision Optimization

Pre-posterior decision analysis (extensive form)

Decision Event Benefit

 a  X

( , , )b e a x

 e  Z

Decision Event

*

1 max max ( , , ) ( , )Xe a
B E b e a x f x a dx 

 Z
Z

The optimal experiment     may be found frome
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Decision Optimization

Value of Information

max max ( , , ) ( , ) max ( , ) ( , )X Xe a a
VoI E b e a x f x a dx b a x f x a dx   

  Z
Z

The value of information VoI is determined from:

 a  X

( , , )b e a x

 e  Ẑ

 a  X

( , )b a x

Decision Event BenefitDecision EventDecision

0

1  Z
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Decision Optimization

Games and Risk

Rules (exogenous)
- Nature

Rules (endogenous)
- Knowledge
- Best practices
- Rules and standards
- Culture
- Ethics

Drivers/Challenges
- Preferences
- Psychology
- Asymmetric information

Player

Nature

Other 

players

Game

Rules

Rules
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Decision Analysis in Engineering

The decision tree

Action alternatives Outcome Consequence Utility(consequence)

40 ft Pile

50 ft Pile

depth = 40 ft

depth = 50 ft

0

400

100

0

none

splice

cutting

none

40 ft Pile

50 ft Pile

0

400

100

0

none

splice

cutting

none

Pile

Depth of rock bed 

40ftor50ft ?

depth = 50 ft

depth = 40 ft
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Decision Analysis in Engineering

The different types of decision analysis

- Prior

- Posterior

- Pre-posterior

Illustrated on an example :

Question : What pile length should be applied ?

Alternatives :
a0 : Choose a 40 ft pile
a1 : Choose a 50 ft pile

States of nature (depth to rock bed)
θ0 : Rock bed at 40 ft
θ1 : Rock bed at 50 ft

Pile

Depth of rock bed 

40ft or 50 ft ?



37/50                         M. H. Faber                          Systems Engineering, April 2017

Decision Analysis in Engineering

Prior Analysis

P’[q0] = 0.70
P’[q1 ] = 0.30

The expected utility is calculated to be equal to

     

   

   

0 1

0 0 0 1 1 0

0 0 1 1 1 1

' min{  , }

         min{ ' '  ,  

                    ' ' }

           min{0.7 0 0.3 400,  0.7 100 0.3 0}

           min{120,70} 70     Decision f

E u u a u a

P u a P u a

P u a P u a

q q q q

q q q q



         

        

      

   1or a  (50ft Pile)

a0

a1

q0

q1

p=0.70
u = 0

u = 400 (Pile is spliced)

p=0.30

p=0.70
q0

q1

p=0.30

u = 100 (Pile is cut)

u = 0

120120

7070
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Decision Analysis in Engineering

Choice of pile a1 (50ft Pile)

a0

a1

q0

q1

p=0.70
u = 0

u = 400 (Pile is spliced)

p=0.30

p=0.70
q0

q1

p=0.30

u = 100 (Pile is cut)

u = 0

120120

7070
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 '
''( )

'

k i i
i

k jj

P z P
P

P z P
j

q q
q

q q

  
     

Decision Analysis in Engineering

Posterior Analysis
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Decision Analysis in Engineering

Posterior Analysis

Prior

Posterior Likelihood

Prior Posterior Likelihood

Prior

Likelihood

Posterior
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Decision Analysis in Engineering

Posterior Analysis

Ultrasonic tests to determine the depth to bed rock

True state

Test result

q0

40 ft – depth  

q1

50 ft – depth 

z
0  

- 40 ft indicated 0.6 0.1

z
1  

- 50 ft indicated 0.1 0.7

z
2 

- 45 ft indicated 0.3 0.2

Likelihoods of the different indications/test results given the various 

possible states of nature – ultrasonic test methods k jP z q 
 

 '
''( )

'

k i i
i

k jj

P z P
P

P z P
j

q q
q

q q

  
     
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Decision Analysis in Engineering

Posterior Analysis

It is assumed that a test gives a 45 ft indication

        0.21 = 0.7  3.0'' 002200 xPzPzPP  qqqq

        0.06 = 0.3  2.0'' 112211 xPzPzPP  qqqq

 P z' '
.

. .
q0 2

0 21

0 21 0 06



 =  0.78

 P z' '
.

. .
q1 2

0 06

0 21 0 06



 =  0.22

 '
''( )

'

k i i
i

k jj

P z P
P

P z P
j

q q
q

q q

  
     
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Decision Analysis in Engineering

Posterior Analysis

Test result indicates 45ft to rock bed

Choice of alternative a1 (50ft Pile)

a0

a1

q0

q1

p=0.78
u = 0

u = 400 (Pile is spliced)

p=0.22

p=0.78
q0

q1

p=0.22

u = 100 (Pile is cut)

u = 0

8888

7878
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Decision Analysis in Engineering

Posterior Analysis

       

2 2

0 1 0 1

'' min{ '' ( ) }

              min{ '' 0 '' 400,  '' 100 '' 0}

              min{0.78 0 0.22 400,  0.78 100 0.22 0}

              min{88 , 78} 78

jE u z E u a z
j

P P P Pq q q q

      

      

      

 

Choice of alternative a1 (50ft Pile)

a0

a1

q0

q1

p=0.78
u = 0

u = 400 (Pile is spliced)

p=0.22

p=0.78
q0

q1

p=0.22

u = 100 (Pile is cut)

u = 0

8888

7878
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Decision Analysis in Engineering

Pre-posterior Analysis

     
1,

1 1

' '' ' min{ '' ( ) }
n n

i i i j ij mi i
E u P z E u z P z E u a z


 

          

     0 0 1 1' ' 'i i iP z P z P P z Pq q q q        

     0 0 0 0 0 1 1' ' ' 0.6 0.7 0.1 0.3 0.45P z P z P P z Pq q q q              

     1 1 0 0 1 1 1' ' ' 0.1 0.7 0.7 0.3 0.28P z P z P P z Pq q q q              

     2 2 0 0 2 1 1' ' ' 0.3 0.7 0.2 0.3 0.27P z P z P P z Pq q q q              
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Decision Analysis in Engineering

Pre-posterior Analysis

0 0

0 0 1 0 0 0 1 0

'' min{ '' ( ) }

             min{ '' 0 '' 400,  '' 100 '' 0}

             min{0.93 0 0.07 400,  0.93 100 0.07 0}

            0.07 400 0.93 0 28

jE u z E u a z
j

P z P z P z P zq q q q

      

                 

      

    

cuttingsplicingdo nothing do nothing

a0 a1
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Decision Analysis in Engineering

Pre-posterior Analysis

1 1

0 1 1 1 0 1 1 1

'' min{ '' ( ) }

             min{ '' 0 '' 400,  '' 100 '' 0}

             min{0.25 0 0.75 400,  0.25 100 0.75 0}

             0.25 100 0.75 0 25

jE u z E u a z
j

P z P z P z P zq q q q

      

                 

      

    

cuttingsplicingdo nothing do nothing

a0 a1
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Decision Analysis in Engineering

Pre-posterior Analysis

The minimum expected costs based on pre-posterior decision analysis 

– not including costs of experiments

   
1

' '' 28 0.45 25 0.28 78 0.27 40.00
n

i i
i

E u P z E u z


          

   ' 70.00 40.00 30.00E u E u   

Allowable costs for the experiment
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Decision Analysis in Engineering

Pre-posterior Analysis

   ' 70.00 40.00 30.00E u E u   

Allowable costs for experiments
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Thanks for your attention 




