

LUND UNIVERSITY

Date: March 2018 Place: Novi Sad

An Introduction to human behaviour in fire and evacuation

Enrico Ronchi, PhD

Department of Fire Safety Engineering Lund University

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

- The evacuating crowd
- PBD and evacuation models
- Basic concepts of HBIF
- Predicting behaviour with evacuation models
- Evacuation model results

The evacuating crowd

What is a Crowd?

A multitude of individuals walking through the same space at a certain moment in time

- Engineers deal with increasingly large, challenging and complex buildings while trying to minimise costs.
- Larger buildings are associated with potential larger incidents

The evacuating crowd

Calamitas et securitas

- Crowd evacuation disasters known since the Roman Empire
- Colosseum could take up to 73,000 people
- 60 entrances
- It could be evacuated in 5 min

Crowd evacuation disasters still occur!

Requirement according to PBD legislations...

Buildings shall be designed so that <u>satisfactory escape</u> can take place in the event of fire


Is the building safe enough?

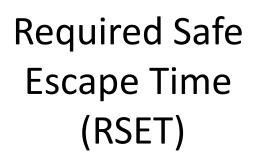
Given the threat (e.g. a fire), the conditions in the building shall not become such that <u>critical conditions</u> are exceeded during the evacuation process

K-FORCE

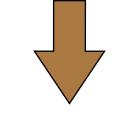
How do we know that a building is safe?

Required Safe Escape Time (RSET)

Available Safe Escape Time (ASET)

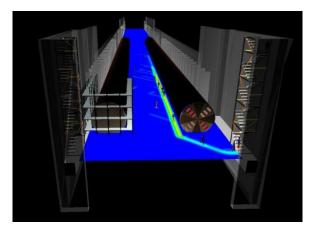


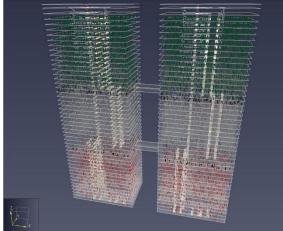
SAFE



How do we know that a building is safe?

We need a way to estimate RSET


Egress models



How do I prove that evacuation design is safe enough?

- Hand calculations (hydraulic model in the SFPE handbook, Predtechinski and Milinski, etc.)
- Evacuation modelling

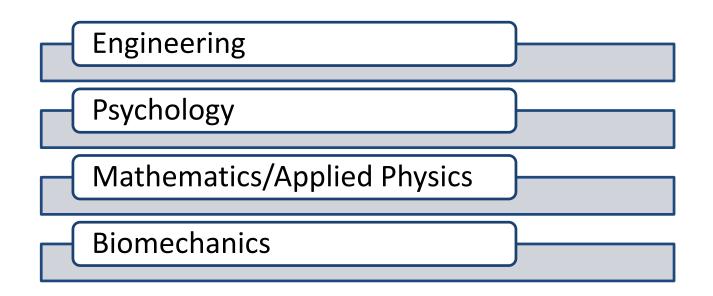
K-FORCE

Examples

Prescriptive-based design

- Prescribed dimensions of egress components (exits, stairs, etc.)
- Prescribed max distance to an exit

Performance-based design


- Egress component dimensions is based on the demonstration of a sufficient safety level for evacuation
- Any max distance to an exit can be used as long as the building can be evacuated safely

 Understanding and predicting human behaviour in fire requires the study of several science fields

Do people behave rationally or do they panic?

http://www.wikihow.com/Evacuate-the-Hotel-You-Are-at-During-a-Fire-Alarm

"Boston on Fire" in The Illustrated Police News, Law- Courts and Weekly Record, 1872.

Do people panic in evacuation?

Do people panic in evacuation?

Some definitions of panic

- Panic is an acute fear reaction marked by flight behavior (Quarantelli, 1977)
- Panic is a behavioral response that also involves extravagant and injudicious effort (Bryan, 2002).
- An excessive fear reaction which is persistent and unrealistic in terms of the situation (Sime, 1980)
- Breaking of social order, competition unregulated by social forces (Johnson, 1987)

Do people panic in evacuation?

Panic term is used:

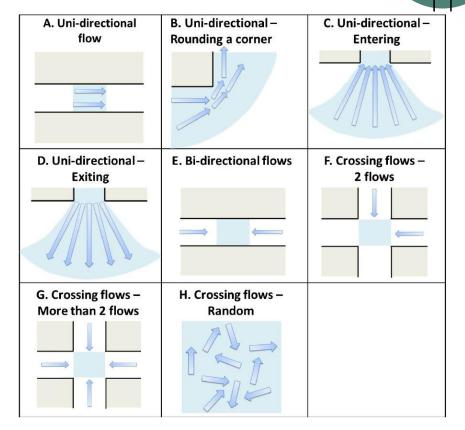
- Describing own/other people behaviour referring to stress, anxiety or fear
- Assessing own ability to respond or responses that do not appear the best for the situation (shaking, crying, yelling, running, etc.)

Psychology of mass behaviour

- Cooperation and helping behaviour (social vs anti-social)
- Collective resilience
- Leadership
- Lack of trust vs information
- Established and emerging groups

Do people panic in evacuation?

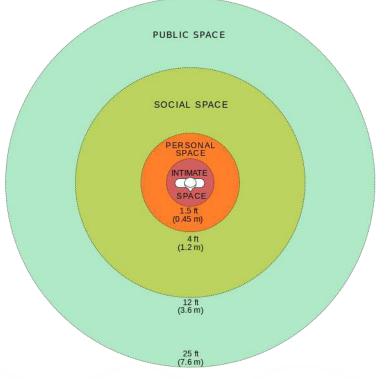
- Competitive behaviours are rare, people behave altruistically
- Panic concept does not match actual behaviour, which in most cases are rational
- Human behaviour in fire models are based on the assumption that people behave rationally


Use of a simplified engineering time-line model

Simulated crowd behaviour

- Range of pedestrian movement behaviours
- Emerging behaviour such as group behaviours, collision avoidance, crowd pressure

Duives et al, 2013

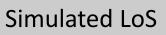


How much space do evacuating crowds need?

- Personal space preferences (depending on body width, sway and collision avoidance)
- Needed to understand comfort and safety requirements
- Different among cultures

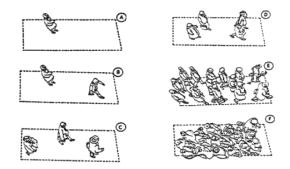
Based on E. T. Hall

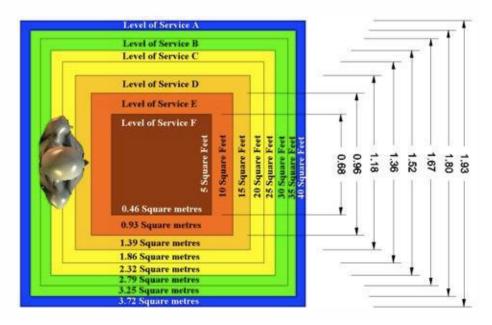
- LoS concept introduced by Fruin (1987)
- Speed and density to define guidelines for comfort and safety during evacuation
- These area include space around the person: this is called the body ellipse.
- LoS assumes an elliptical body size for personal space



Population	Breadth (cm)	Depth (cm)	Area (m²)
British males	51.00	32.50	0.26
British females	43.50	30.50	0.21
Polish males	47.50	27.50	0.21
Polish females	41.00	28.50	0.18
Japanese males	41.00	28.50	0.18
Japanese females	42.50	23.50	0.16
Hong Kong males	47.00	23.50	0.17
Hong Kong females	43.50	27.00	0.18
The USA males	51.50	29.00	0.23
The USA females	44.00	30.00	0.21
French males	51.50	28.00	0.23
French females	47.00	29.50	0.22
Swedish males	51.00	25.50	0.20
Swedish females	42.50	30.00	0.20
Swiss males	47.50	29.50	0.22
Swiss females	45.50	32.50	0.23
Indian males	45.50	23.50	0.17
Indian females	39.00	25.50	0.16
Average	46.06	28.18	0.20
Maximum	51.50	32.50	0.26

Pheasant, 1998





Level of Service (LoS)

LoSA - free circulation

LoSF – complete congestion

Fruin, J. J. (1987). *Pedestrian Planning and Design*. Elevator World, Inc, Mobile, AL.

Ongoing discussion on the exact relationship between densities, speeds and flows

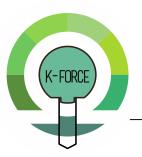
...

Shockwaves

At 6+ people per square metre, there is no space between individuals and push forces are transmitted through the crowd \rightarrow crowd turbulence

Dangerous \rightarrow prevent shockwaves to occur

Maximum packing?

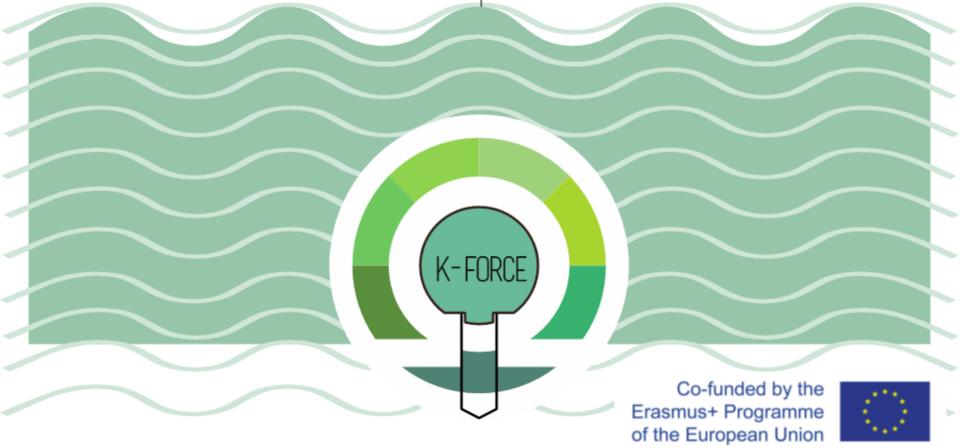

Maximum packing during evacuation is associated with risks and may be uncomfortable, depending on its <u>location</u> and <u>duration</u>.

The most common element of failure in crowd management design during evacuation is that the design capacity in relation to the actual crowd has not been accounted correctly

Evacuation model results

- Total evacuation times
- Occupant-evacuation time curves
- Prediction of congestion levels and other emergent behaviours
- Toxicity assessment in case of firepeople interaction

- The evacuating crowd
- PBD and evacuation models
- Basic concepts of HBIF
- Predicting behaviour with evacuation models
- Evacuation model results


References

- Drury, John (2009) Managing crowds in emergencies: psychology for business continuity. Business Continuity Journal, 3 (3). pp. 14-24. ISSN 1752-4539
- Duives, D. C., Daamen, W., & Hoogendoorn, S. P. (2013). State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies, 37, 193–209. https://doi.org/10.1016/j.trc.2013.02.005
- Fahy, R.F., Proulx, G., Aiman, L., 2012. Panic or not in fire: Clarifying the misconception. Fire and Materials 36, 328–338. doi:10.1002/fam.1083
- Fruin, J. J. (1987). Pedestrian Planning and Design ((Revised Edition)). Elevator World, Inc, Mobile, AL.
- > Hall, Edward T. (1966). The Hidden Dimension. Anchor Books. ISBN 0-385-08476-5.
- Helbing, D., & Mukerji, P. (2012). Crowd disasters as systemic failures: analysis of the Love Parade disaster. EPJ Data Science, 1(1). https://doi.org/10.1140/epjds7
- Pheasant, S. (1996). Bodyspace: anthropometry, ergonomics, and the design of work (2nd ed). London ; Bristol, PA: Taylor & Francis.
- Still, G. K. (2013). Introduction to crowd science. Boca Raton: CRC Press.

Thank you for your attention

enrico.ronchi@brand.lth.se

Knowledge FOr Resilient soCiEty